MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE CAMPOS.
MECÃNICA GRACELI GERAL - QTDRC.
equação Graceli dimensional relativista tensorial quântica de campos G* = = [ / IFF ] * * = / G / .= / [DR] = = .= + G+ * * = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
Teoria | Interação | mediador | Magnitude relativa | Comportamento | Faixa |
---|---|---|---|---|---|
Cromodinâmica | Força nuclear forte | Glúon | 1041 | 1/r7 | 1,4 × 10-15 m |
Eletrodinâmica | Força eletromagnética | Fóton | 1039 | 1/r2 | infinito |
Flavordinâmica | Força nuclear fraca | Bósons W e Z | 1029 | 1/r5 até 1/r7 | 10-18 m |
Geometrodinâmica | Força gravitacional | gráviton | 10 | 1/r2 | infinito |
G* = OPERADOR DE DIMENSÕES DE GRACELI.
DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES DE CAMPOS E ENERGIAS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI, E OUTROS.
/
/ * *= = [ ] ω , , .=
MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE INTERAÇÕES DE CAMPOS. EM ;
MECÂNICA GRACELI REPRESENTADA POR TRANSFORMADA.
dd = dd [G] = DERIVADA DE DIMENSÕES DE GRACELI.
- [ G* /. ] [ [
G { f [dd]} ´[d] G* . / f [d] G* dd [G]
O ESTADO QUÂNTICO DE GRACELI
- [ G* /. ] [ [ ]
G* = DIMENSÕES DE GRACELI TAMBÉM ESTÁ RELACIONADO COM INTERAÇÕES DE ENERGIAS, QUÂNTICAS, RELATIVÍSTICAS, , E INTERAÇÕES DE CAMPOS.
o tensor energia-momento é aquele de um campo eletromagnético,
/* = = [ ] ω , , .=
Quebra espontânea de simetria é um processo pelo qual um sistema simétrico passa, de forma espontânea, para um estado não simétrico. Este tipo de processo, incomum na natureza física, é vital para a compreensão do modelo padrão das partículas fundamentais, que é um dos mais importantes ramos da física moderna.
Definição
Para que uma quebra espontânea de simetria ocorra, deve necessariamente haver um sistema no qual existam diversos estados subsequentes com iguais probabilidades de ocorrer. Este sistema, como um todo, então é tratado como um sistema simétrico. Entretanto apenas um dos estados subsequentes deve ocorrer e toda a probabilidade dos inúmeros estados diversos é reduzida a zero, já que não há mais simetria. Então, é dito que a simetria do sistema foi espontaneamente quebrada.
Definição formal
Quando uma teoria é dita simétrica com respeito à um grupo simétrico, mas afirma que um elemento deste grupo é distinto, então uma quebra espontânea de simetria ocorreu, ou seja, pela teoria, não é necessário que se identifique o elemento e sim apenas que haja um elemento distinto.
Importância no modelo padrão
Sem a quebra espontânea de simetria o modelo padrão prediz a existência de um determinado número de partículas. Entretanto, algumas destas partículas (os bosões W e Z, por exemplo) são preditos de não possuir massa, quando na realidade eles possuem massa. Esta era a maior falha do modelo até que o físico escocês Peter Higgs e outros propuseram, através do que ficou conhecido por mecanismo de Higgs, o uso da quebra espontânea de simetria para comportar massa nestas partículas. O mecanismo por sua vez prediz a existência de uma nova partícula, o bosão de Higgs. O bosão/bóson de Higgs foi detectado no LHC do CERN em Julho de 2012, com probabilidade maior que 5 sigmas de ser verdadeira tal identificação.
Uso na matemática

Na matemática o uso mais comum da quebra espontânea de simetria é pelo uso da Função de Lagrange, a qual essencialmente indica como um sistema irá se comportar por meio de termos potenciais
É neste termo potencial que a ação da quebra de simetria ocorre. Como demonstra o gráfico do chapéu mexicano
Este termo potencial possui vários possíveis mínimos dados por
para qualquer real no intervalo . Este sistema também possui um estado do vácuo quântico que corresponde ao , este estado possui um grupo unitário simétrico. Entretanto, uma vez que o sistema atinja um estado específico no vácuo (que corresponda a um valor para ) a simetria será espontaneamente quebrada.
Para um sistema físico composto por partículas de spin zero, existe um potencial de Coulomb blindado que é conhecido como potencial de Yukawa. Tal pontencial é da forma
/ * = = [ ] , [ ] .=
e que é, claramente, um potencial do tipo central. Na equação acima, é uma constante (positiva) de acoplamento que configura a intensidade da força efetiva, é a massa da partícula afetada pelo potencial, é a velocidade da luz e a constante de Planck. Naturalmente, podemos mostrar que o potencial está associada a uma força sempre atrativa.
Em mecânica quântica, um propagador é uma função ou distribuição que descreve a amplitude da probabilidade de uma partícula se mover de uma posição para outra. Tecnicamente, é a função de Green para a equação do movimento.
Definição
Partícula não-relativística
O propagador é uma função ou distribuição que verifica a seguinte equação:
- .
Aqui é o hamiltoniano e é a distribuição dirac.
Por exemplo, considere uma partícula não relativística livre. O propagador, portanto, verifica:
- .
Para resolver isso, converta em momento- e espaço de frequência :
- .
Seguindo-se que:
- .
Converta de volta para posição e espaço-tempo:
- .
A integral é ambígua, porque tem um pólo em
- .
Deve-se desambiguar a integral adicionando um infinitesimal, mas existem dois sinais possíveis (Por isso o propagador não é único). Ao adicionar um infinitesimal pode-se calcular:
- ,
Onde:
Representa a função de Heaviside. A função chamada de propagador passado (retarded em inglês), porque é diferente de zero apenas se . Enquanto isso, a função é chamada de propagador futuro (advanced em inglês), porque é diferente de zero apenas se .
Partícula relativística
Usamos uma convenção de sinalização para a métrica que, .
Uma partícula escalar relativística verifica a equação de Klein-Gordon . Daí o propagador de uma partícula escalar relativística é definido como a função de Green da equação de Klein-Gordon. Eis:
- .
Para resolver, converte-se em momento linear:
- .
Então:
- .
Converte-se de volta para o espaço de posição:
- .
A integral é ambígua porque tem dois pólos em:
- .
Deve-se desambiguar a integral adicionando um infinitesimal. De acordo com a teoria da integral curvilínea, podemos subir ou descer em cada pólo. Portanto, existem quatro métodos diferentes para eliminar a ambiguidade da integral; o propagador não é único. Se subirmos pelos dois pólos, o passado (em inglês retarded) será encontrado:
Onde representa a função de Bessel de primeiro tipo e . Se descermos em ambos os pólos, o propagador futuro (advanced) será encontrado:
Se descermos pelo pólo esquerdo (em e para cima através do pólo direito (em ), O propagador de Feynman será encontrado:
Onde representa a função de Hankel de primeiro tipo e significa a função modificada de Bessel de segundo tipo. Se subirmos pelo pólo esquerdo e descermos pelo pólo direito, o propagador de Dyson encontrar-se-á:
Onde representa a função de Hankel do segundo tipo .
Os quatro propagadores verificam as seguintes equações.
- .
Além disso, os propagadores exprimem-se com valores esperados vazios de operadores de campo:
Comments
Post a Comment